Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Tribenzyl(η^5 -pentamethylcyclopentadienyl)hafnium(IV)

Dale C. Swenson et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

© 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

Acta Crystallographica Section C Crystal Structure Communications

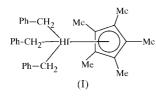
ISSN 0108-2701

Tribenzyl(η^5 -pentamethylcyclopentadienyl)hafnium(IV)

Dale C. Swenson,^a* Zhaoyu Guo,^a Donna J. Crowther,^a Norman C. Baenziger^a and Richard F. Jordan^b

^aDepartment of Chemistry, University of Iowa, Iowa City, IA 52242, USA, and ^bDepartment of Chemistry, University of Chicago, Chicago, IL 60637, USA Correspondence e-mail: dale-swenson@uiowa.edu

Received 10 May 2000 Accepted 20 June 2000


Data validation number: IUC0000162

The title compound, $[Hf(C_7H_7)_3(C_{10}H_{15})]$, adopts a monomeric three-legged piano-stool structure. One benzyl ligand is disordered between two sites (44:56%) related by a ~30° rotation about an axis defined by the Hf atom and the *ipso*-C atom of the benzyl ligand.

Comment

The structures of electronically unsaturated early transition metal benzyl complexes are often distorted by weak $M \cdot \cdot \cdot Ph$ interactions which lead to reduced $M - CH_2 - Ph$ angles and short $M \cdot \cdot \cdot C_{ipso}$ contacts. Such η^2 - or η^n -benzyl structures were first observed for $M(CH_2Ph)_4$ (M = Ti, Zr, Hf) complexes (Davies *et al.*, 1971; Bassi *et al.*, 1971) and have since been observed in a variety of systems, including cationic group 4 metal benzyl compounds (Jordan *et al.*, 1987, 1990; Crowther *et al.*, 1993; Bei *et al.*, 1997).

The title compound, (I), adopts a monomeric three-legged piano-stool structure. The plane formed by the three methylene C atoms (C11, C21A and C21B average, and C31) is parallel to the pentamethylcyclopentadienyl (Cp*) plane

(dihedral angle = 0.5°). The Cp* methyl groups are bent slightly away from the Hf atom, with the largest deviation [0.166 (10) Å from the C1–C5 plane] occurring with the C10methyl group that is eclipsed with the disordered benzyl ligand [C21A-C27A, occupancy = 0.44 (3); C21B-C27B, occupancy = 0.56 (3)]. There are no short Hf \cdots C_{ipso} contacts (no distances less than 3.1 Å), indicating no significant Hf–Ph interactions.

Experimental

A solution of PhCH₂MgCl (10.2 ml, 2.0 M in tetrahydrofuran, 20.4 mmol) was added to a slurry of Cp*HfCl₃ (2.60 g, 6.19 mmol) in Et₂O (30 ml) at 195 K under nitrogen. The reaction mixture was warmed to room temperature and stirred for 1 h, resulting in a paleyellow slurry. The solvent was removed under vacuum and the resultant solid was extracted with hexane $(3 \times 40 \text{ ml})$, giving a yellow filtrate. The filtrate was evaporated under vacuum to give a yellow solid which was further purified by recrystallization from toluene/ hexane (1.34 g, 36.3%). Crystals suitable for X-ray diffraction were grown from a saturated toluene/hexane solution cooled to 238 K. Analysis calculated for C₃₁H₃₆Hf: C 64.42, H 6.18; found: C 64.50, H 5.99%. ¹H NMR (C_6D_6 , 298 K) δ 7.14 (*t*, *J* = 7.6 Hz, 6H, meta), 6.91 (*t*, J = 7.6 Hz, 3H, para), 6.66 (d, J = 7.2 Hz, 6H, ortho), 1.7 (s, 15H, Cp*), 1.68 (s, 6H, CH₂). The low-temperature ¹H NMR spectrum (toluene d_{8} , 203 K) is essentially unchanged from that at ambient temperature. ¹³C{H} NMR (C₆D₆, 298 K): δ 145.9 (*ipso*-Ph), 128.8, 128.3, 122.9, 119.3 (C₅Me₅), 83.8 (t, J_{CH} = 121.4 Hz, from gated-{¹H} spectrum, HfCH₂), 11.7 (C₅Me₅).

Crystal data

$[Hf(C_7H_7)_3(C_{10}H_{15})]$	Z = 2
$M_r = 587.09$	$D_x = 1.487 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 10.359 (1) Å	Cell parameters from 40
b = 12.693 (2) Å	reflections
c = 10.102 (7) Å	$\theta = 6.5 - 10.2^{\circ}$
$\alpha = 97.49 \ (3)^{\circ}$	$\mu = 3.993 \text{ mm}^{-1}$
$\beta = 91.42 \ (2)^{\circ}$	T = 293 (2) K
$\gamma = 94.96 \ (1)^{\circ}$	Prism, yellow
V = 1311.1 (9) Å ³	$0.56 \times 0.42 \times 0.40 \text{ mm}$
Data collection	
Enraf-Nonius CAD-4 diffract-	$R_{\rm int} = 0.017$
ometer	$\theta_{\rm max} = 25^{\circ}$
θ –2 θ scans	$h = -12 \rightarrow 12$
Absorption correction: ψ scan	$k = -15 \rightarrow 15$
(<i>MolEN</i> ; Fair, 1990)	$l = -11 \rightarrow 11$
$T_{\min} = 0.154, T_{\max} = 0.202$	4 standard reflections

3907 reflections with $I > 2\sigma(I)$ *Refinement*

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.079$ S = 1.068

8828 measured reflections

4414 independent reflections

 $wR(F^{-}) = 0.079$ S = 1.0684414 reflections 353 parameters H-atom parameters constrained frequency: 60 min intensity decay: <2% $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0428P)^{2} + 1.4361P]$ where $P = (F_{o}^{2} + 2F_{o}^{2})/3$

where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = -0.031$
$\Delta \rho_{\rm max} = 0.83 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -1.01 \text{ e } \text{\AA}^{-3}$
Extinction correction: SHELXTL
Extinction coefficient: 0.0117 (11)

Table 1

Selected geometric parameters (Å, °).

Hf1-C11	2.240 (5)	Hf1-C5	2.499 (5)
Hf1-C21A	2.23 (3)	Hf1-C3	2.499 (5)
Hf1-C21B	2.29 (2)	Hf1-C1	2.500 (5)
Hf1-C31	2.282 (6)	Hf1-C2	2.508 (5)
Hf1-C4	2.486 (5)		
C21A-Hf1-C11	97.3 (6)	C11-Hf1-C21B	106.8 (5)
C21A-Hf1-C31	117.2 (7)	C31-Hf1-C21B	103.4 (7)
C11-Hf1-C31	110.0 (2)		

One benzyl ligand (designated with C2** labels) was found to be disordered with two orientations; one is related to the other by a rotation of $\sim 30^{\circ}$ about an axis approximated by the Hf-(C22A/ C22B average) direction. The occupancies refined to 0.44 (3) for the C2*A site and 0.56 (3) for the C2*B site. Each ligand was refined with individual anisotropic displacement parameters subject to the following restraints: (i) the ring C-C bonds were restrained to 1.39 (1) Å; (ii) the C22A and C22B atoms were assigned the same thermal displacement due to their close proximity (0.138 Å); (iii) each partial benzyl group was restrained to be flat (s.u. = 0.1); (iv) the rigid-bond restraint (s.u. = 0.005) was applied to the displacement parameters of each partially occupied benzyl group; (v) displacement parameters of atoms between the two sites were restrained to be similar if within 0.6 Å (s.u. = 0.05); (iv) the two sites were restrained to have the same conformation and bonds on opposite sides of the phenyl rings were restrained to be the same (default s.u.'s). H atoms were included with the riding model using program defaults.

Data collection: *CAD-4 Operations Manual* (Enraf–Nonius, 1977); cell refinement: *CAD-4 Operations Manual*; data reduction: *MolEN* (Fair, 1990); program(s) used to solve structure: *SHELXTL* (Shel-

drick, 1995); program(s) used to refine structure: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

- Bassi, I. W., Allegra, G., Scordamaglia, R. & Chiocela, G. (1971). J. Am. Chem. Soc. 93, 3787–3788.
- Bei, X., Swenson, D. C. & Jordan, R. F. (1997). Organometallics, 16, 3282–3302.
- Crowther, D. J., Borkowsky, S. L., Swenson, D. C., Meyer, T. Y. & Jordan, R. F. (1993). Organometallics, 12, 2897–2903.
- Davies, G. R., Jarvis, J. A. & Kilbourn, B. T. (1971). J. Chem. Soc. Chem. Commun. pp. 1511–1514.
- Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
- Jordan, R. F., LaPoint, R. E., Baenziger, N. C. & Hinch, G. D. (1990). Organometallics, 9, 1539–1545.
- Jordan, R. F., LaPoint, R. E., Bajgur, C. S., Echols, S. F. & Willett, R. D. (1987). J. Am. Chem. Soc. 109, 4111–4113.
- Sheldrick, G. M. (1995). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.